
Attention:

This material is copyright   1995-1997 Chris Hecker.  All rights
reserved.

You have permission to read this article for your own education.  You
do not have permission to put it on your website (but you may link
to my main page, below), or to put it in a book, or hand it out to your
class or your company, etc.  If you have any questions about using
this article, send me email.  If you got this article from a web page
that was not mine, please let me know about it.

Thank you, and I hope you enjoy the article,

Chris Hecker
definition six, incorporated
checker@d6.com
http://www.d6.com/users/checker

PS.  The email address at the end of the article is incorrect.  Please
use checker@d6.com for any correspondence.



U N D E R  T H E  H O O D

16 GAME DEVELOPER • APRIL/MAY 1995

I
f there is one technical feature
today’s high-performance three-
dimensional games must have, it is
texture mapping. The technique of
texture mapping stretches across
almost every genre of game, from
role-playing games like Ultima
Underworld and System Shock,

through simulators like Indy Car Racing
and Wing Commander III, to action
games like Doom and Descent.

Given its popularity, you’d think
there would be a wealth of information
available on how to actually write your
own perspective texture mapper. You’d
be wrong.

When I was researching this article
(actually, when I was trying to figure out
if an article on perspective texture map-
ping was even needed), I looked high
and low for intuitive descriptions and
working sample code, but not much
exists. Most articles on the Internet
describe affine texture mapping, and the
few perspective texture mapping articles
I did find on x2ftp.oulu.fi, an excellent
game programming ftp site managed by
Jouni Miettunen, use overly complicated
descriptions and aren’t accompanied by
working code. Even old standbys, like
Computer Graphics: Principles and Practice
(Addison-Wesley, 1992) by James D.
Foley, Andries van Dam, Steven K.
Feiner, and John F. Hughes (commonly
called Foley and van Dam, much to the
chagrin of Feiner and Hughes, I’m sure)
and the bible of texture mapping, Digital
Image Warping (1990, IEEE Computer
Society) by George Wolberg, are woeful-
ly inadequate if you actually want to
write a texture mapper, especially one
fast enough to be compelling for games.

I’m going to address this lack of
documentation in this and the second
part of this article. First, using nothing
more than basic algebra and geometry,
I’ll show you an easy-to-understand
mathematical foundation, for how and
why perspective texture mapping works.
I’ll also provide sample code to imple-
ment the naive algorithm. In the second
installment, we’ll speed it up to interac-
tive performance.

Assumptions, Definitions,
and Concepts
If we want to cover everything in two
articles, we’re going to have to move
pretty fast. To do this, I need to assume
you know a bit about three-dimensional
graphics. If you don’t know how object
space, world space, view space, and
screen space interact, or you don’t know
what those terms mean, you should
probably pick up a book like Foley and
van Dam before reading this article.

The term “texture mapping”
describes a whole family of techniques,
but for these articles, we’ll define texture
mapping as drawing a planar polygon as
if a bitmap was glued to the polygon’s
face. This bitmap goes through the same
transforms (or at least looks like it does)
as the polygon, so if we view the polygon
almost edge on, the bitmap, or texture,
will look like it’s edge on as well. Figure
1 shows a checkerboard viewed at an
angle. You can see how the squares get
smaller as they recede, just as you’d
expect.

To accomplish this mapping, we
associate a texture bitmap with each
polygon and texture coordinates with
each vertex of the polygon. In addition

Perspective
Texture Mapping
Part I: Foundations

Figure 1. Textured Checkerboard



to the normal (x,y,z) triplet to define a
vertex in three dimensions, we specify the
texture coordinates u and v. These coor-
dinates are two-dimensional coordinates
into the texture bitmap, and the pixels in
this bitmap are sometimes called texels.

To make things easy to visualize,
our diagrams and equations will be in
two dimensions—think of working in a
slice through the three-dimensional
space—but our results extend easily into
three dimensions.

Perspective Projections
Most three-dimensional game graphics
are based on perspective projections. Per-
spective projections make distant objects
seem smaller than closer objects and dis-
tort angles so scenes look realistic.

The basic equation for the perspec-
tive projection uses similar triangles that
share a vertex at the origin (the view-
point). If we take the point (x0,z0) (ignore
the u coordinates for the time being) and
project it onto the dashed vertical z=d
line in Figure 2 to give us (x0´,d), the
equation for the relationship between
these two points is:

In other words, the ratio of the
height of the triangle formed by ((0,0),
(x0´,d), (0,d)) to the length of its base is
the same as the ratio of the height of the
triangle formed by ((0,0), (x0,z0), (0,z0)) to
the length of its base. If we assume d=1
for the current example, and generalize
this equation to all unprojected points
(x,z), we get:

If we view the z=d line as the one-
dimensional equivalent of the two-
dimensional screen plane (pretend you’re
looking down on the plane from above,
so you can only see it as a line), Equation
1 says we can generate screen coordinates
(x´ for values of x) by dividing the unpro-
jected object coordinates by their z val-
ues. This is the perspective projection in
its essence.

Mapping Direction
In three-dimensional graphics, we con-
sider transforming from object to screen
coordinates moving “forward,” so Equa-
tion 1 is called a forward mapping—it
projects the source polygon forward onto
destination pixels. To use a forward map-
ping for texturing a polygon, you step
along the polygon in object space and
project each generated point forward to a
destination pixel position. Forward map-
pings don’t work very well for texture
mapping, however, because it’s hard to be
sure how far to step in the source so that
the projected coordinates don’t skip or
overwrite any pixels in the destination.

Backward mappings, on the other
hand, allow us to step in screen space,
processing each pixel exactly once. If we
manipulate Equation 1 to give us a back-
ward mapping from x´ to x we get:

x = x´z (2)

This tells us we can generate values
of x from values of x´ if we multiply x´ by
z. We can easily generate the desired u
texture coordinate once we have x, but
first we must find the correct z to feed into

x x
z' ( )= 1

x
d

x
z

' 0 0

0
=

GAME DEVELOPER • APRIL/MAY 1995  17

Little has been writ-

ten on perspective

texture mappers, an

invaluable feature of

any high-perfor-

mance game. This

month, Chris Hecker

fills the void with the

first of a two-part

article on the subject.

Chris Hecker



Equation 2 (we already know x´ because
it’s the current pixel we want to write).

It would be great if we could gener-
ate z values directly from x´ values using a
simple linear interpolation. We often use
linear interpolations in graphics in the
form of digital differential analyzers
(DDAs), and fixed and floating-point
interpolations, but we know linear inter-
polation is only accurate when we are
interpolating a linear equation. Let’s
explore the relation between x´ and z to
see whether they are linear with respect
to one another, which in turn will tell us
if we can use linear interpolation to gen-
erate z from x´.

A linear equation is any equation of
the form:

y = AX + B (3)

for any real values of A and B (this is
called the slope-intercept form, where A
is the slope of the x,y line, and B is the y-
intercept, or value of y when the line
crosses the y axis). That is, as x changes
by a constant amount, y changes by a
constant amount proportional to the
change in x.

To find the relationship between x´
and z, we first take the equation for the
unprojected line in object space, x = Az +
B. The actual values of the constants A
and B are based on the endpoints of the
line segment, and are irrelevant to this
derivation. Next, we substitute this into
Equation 2 to get an equation in z and
x´, and solve for z:

Az + B = x´z
B = z(x´-A)

and finally:

Equation 4 is definitely not a linear equa-
tion with respect to x´, so we can’t direct-
ly compute z incrementally from values
of x´. However all is not lost, because a
little algebraic manipulation gives us:

Equation 5 is a linear equation with
respect to x´. The only problem is, it’s a
linear equation of 1/z with respect to x´,
not z itself! We can use Equation 5 to
linearly interpolate values of 1/z and take
the reciprocal at each pixel to get the real
value of z. In other words, we can linearly
interpolate 1/z and divide x´ by 1/z to
generate values of x according to
Equation 2. These values of x allow us to
compute values of u that we can use to
look up the correct color from the texture
bitmap to store in x´. Voila, perspective
texture mapping.

It turns out we can compute u
directly instead of computing x, saving a
step and simplifying our lives. By defini-
tion in Equation 1, x/z is linear in screen
space (it’s actually equal to screen space,
which is about as linear as you can get!).
Just as x and z are linear with respect to
each other because the object is planar
(or linear, in Figure 2), u and x are linear
with respect to each other for the same
reason. Well, if x/z is linear in screen
space, and x is linear with u, then u/z is
linear in screen space as well (you can
prove this to yourself by playing around
with Equations 1, 3, and 5). Instead of
dividing x/z by 1/z to generate x coordi-
nates that we then use to solve for u
coordinates, we can interpolate u/z and
divide it by 1/z to generate the u values
directly.

Affine texture mapping ignores
these results and linearly interpolates u
and v in screen space without the divide.
This results in funky warping, but for
some polygons it’s not too bad (and

because there’s no divide it has the
potential to be a lot faster). A compari-
son is beyond the scope of this article,
but you can find affine texture mappers
on x2ftp.oulu.fi, which I mentioned pre-
viously.

Our Story So Far
Let’s take a break, sum up our results to
this point, and outline a simple algorithm
to perspective texture map the line seg-
ment in Figure 2.

We’ve shown that 1/z and u/z are
linear in screen space, so the algorithm
for texture mapping Figure 2 goes like
this:
• Project the object vertices into screen

space, giving x´ = x/z and u´ = u/z.
• Let z´ = 1/z at each vertex.
• Linearly interpolate u´ and z´ between

xo´ and x1´, stepping x´ by 1 pixel each
loop.

• At each pixel x´, calculate u by u´/z´,
and use u to fetch the correct texel.

• Write the texel to the destination at
x´.

The proofs for y and v are analogous
to those for x and u, so this is all there is
to writing a three-dimensional perspec-
tive texture mapper.

Interpolation Breakdown
In the simplified algorithm I’ve outlined,
we linearly interpolated u´ and z´ over
the length of the scanline. Each linear
interpolation usually involves these steps:
• Figure out the start and end values of

the interpolants (in Figure 2, u0´,z0´
and u1´,z1´, respectively).

1 1 5z B x A
B= -' ( )

z B
x A= -' ( )4

U N D E R  T H E  H O O D

18 GAME DEVELOPER • APRIL/MAY 1995

Figure 2.  Perspective Projection

(0,0) z

z = dx

(x0',d,u0')

(x0,z0,u0)

(x1,z1,u1)



• Calculate the amount each changes as
it moves from start to end (u1´-u0´ and
z1´-z0´).

• Divide the change by the distance over
which you want to interpolate (x1´-x0´)
to get each step.

• Increment from the start to the end by
this step.

This is a fair amount of work, and if
we plan to rasterize polygons like the tri-
angle shown in Figure 3, we have even
more work to do. We need to interpolate
at least 1/z, u/z, and v/z (and possibly
one or three colors), and if we first calcu-

late the interpolants down each edge, and
then calculate new ones when we get to
each scanline we will soon get lost in a
sea of interpolants going in all sorts of
directions. Luckily, there is a better way.

It just so happens that the incre-
ments in each linear interpolant for a sin-
gle step in x or in y are constant across
the whole polygon. This is a very impor-
tant and very cool result because it means
we can calculate these increments—called
the gradients—once and never need to
worry about calculating interpolants
again during rasterization. In other
words, when we want to rasterize a poly-
gon, we calculate the gradients in x and
in y for each parameter at the very begin-
ning, and every time we step in x or y or
both we just add in the appropriate gra-
dients. When we get to a scanline we
want to draw, we don’t need to calculate
linear interpolations for all of our para-
meters as we step across the scanline in x,
because we already have their gradients
with respect to x sitting around! In the
same vein, stepping down an edge is sim-

ply some combination of the gradient in
x and the gradient in y. (If you think
about it, this also means you only need to
interpolate the parameters down one
edge. Ponder that one for a while.)

To show how gradients are calculat-
ed, let’s use the triangle P0P1P2 in Figure
3. Each vertex has a screen space x and y
associated with it (x´,y´), but in addition
there is an arbitrary parameter, c´, which
could be color for Gouraud shading or
1/z, u/z, or v/z for perspective texture
mapping. It is any parameter we can lin-
early interpolate over the surface of the
two-dimensional (screen space) triangle.

Given this triangle, let’s figure out
how the parameter c´ changes if we hold
y constant and step in x. We will use the
point P4 in our construction (P3 and P4

are both on the P1P2 line in Figure 3). It
is clear that y4´ = y0´, and we can derive
the other coordinates for P4 using the line
equations:

and:

Substituting y0´ for y4´ and solving for the
various coordinates gives us:

and:

Next, refer to Figure 5 to compute
the difference in c´ (called dc´) as it
moves from P0 to P4 with Equation 6.

The analog for c´ with respect to y
as we move from P0 to P3 is also shown in
Figure 5, in Equation 7. (Notice the
denominators: dx = -dy.)

The values dc´/dx and dc´/dy are
called the gradients for the parameter;
dc´/dx is the gradient with respect to x
and dc´/dy is the gradient with respect to

y. We can calculate the gradients for 1/z,
u/z, and v/z with respect to both x and y
at the top of our texture mapper and
never need to calculate them again during
the rasterization of this polygon.

Our new texture mapping algorithm
looks like this:
• Project the object vertices into screen

space, giving x´, y´, u´ = u/z, v´ = v/z,
and z´ = 1/z.

• Calculate the gradients in x and y for
u´, v´, and z´.

• Linearly interpolate down each edge
and across each scanline using the gra-
dients.

• At each pixel, calculate u by u´/z´ and
v by v´/z´, and use u and v to fetch the
correct texel.

• Write the texel to the destination at
x´,y´.

The only thing we’re missing is a
consistent fill convention to make sure
we light the correct destination pixels as
we rasterize the polygon. Once we have a
fill convention, we can guarantee poly-
gons will abut properly and we won’t
have any skipped pixels (dropouts) or
overwrites at the edges.

Conventional Wisdom
A fill convention is a set of rules that
describes how to light pixels in the screen
under various edge conditions. The first
step towards implementing a fill conven-
tion is defining exactly which pixels we
want lit when a polygon is rasterized.
Figure 4 shows the raster grid of the dis-
play, with pixel centers marked with
black dots.

We will define what’s called a top-
left fill convention. Top-left refers to the
tie breaking rule used when the edge of a
polygon lands exactly on a pixel center; if
the edge is a top or a left edge, the pixel
is in the polygon, if it’s a right or a bot-
tom edge, the pixel is considered out.
You can see this convention in Figure 4.
If the red edge is shared by the blue and
the yellow polygon, they will not light
any of the same pixels. The horizontal
red edge is the top of the yellow polygon,
so the pixels are considered members of
that polygon. In contrast, the horizontal
red edge is a bottom edge of the blue
polygon, so the pixels are not lit. All

c
c c
y y y y c4

1 2

1 2
0 2 2'

' '
' ' ' ' '= -
-

Ê
Ë

ˆ
¯ -( ) +

y y

x
x x
y y y y x

4 0

4
1 2

1 2
0 2 2

' '

'
' '
' ' ' ' '

=

= -
-

Ê
Ë

ˆ
¯ -( ) +

c c
y y

c c
y y

1 2

1 2

4 2

4 2

' '
' '

' '
' '

-
- = -

-

x x
y y

x x
y y

1 2

1 2

4 2

4 2

' '
' '

' '
' '

-
- = -

-

U N D E R  T H E  H O 0 D

20 GAME DEVELOPER • APRIL/MAY 1995

Figure 3.  Calculating Gradients

Pn = (xn',yn',Cn')P2

P0
P4

P1

P3



other pixels—those not intersected on
pixel centers—are lit if they are “strictly
in” the polygon. In other words, the pixel
center must be completely inside the
edge for the pixel to be lit. In contrast
with Figure 4, real edges are infinitely
thin, so the pixel center is either out,
intersected exactly, or in.

The next step is to define the fill
convention mathematically. A top-left fill
convention is defined by the ceiling func-
tion for the left and top edges, and the
ceiling-1 of the right and bottom edges.
(The ceiling function bumps a fractional
number up to the next integer unless it’s
already an integer, in which case the
number stays the same.) We’ll be step-
ping in y to generate scanlines, so the
equation for generating x coordinates
from y coordinates as we step from P0 to
P2 in Figure 3 is:

We apply the ceiling function to
this equation to give us integer raster val-
ues for a given y:

If our starting coordinates are real
numbers instead of integers, we need to
apply our convention to the y coordinate
as well to generate the initial y value:

On a number of scanlines in Figure
4, the real edge—the line on which we’re
interpolating our parameters—differs
from the starting pixel center by some
small amount. Pixels in the display are
not points, they’re actually boxes with an
area around the pixel center (the pixel
center is the integer coordinate, and the
box extends 0.5 pixels to each side), and
when stepping from pixel to pixel we
want to make sure we step from one pixel
center to the next. If we don’t step on
pixel centers, our textures will appear to
swim as our polygon rotates because we
aren’t sampling from the same place in

the pixel each time. Also, when reading
from what are essentially random places
in each pixel it’s possible to generate tex-
ture coordinates outside the texture
bitmap (which could crash our program).

Find Your Center
Given that we want to sample the texture
from the exact pixel center, we need to
make sure our interpolants are
prestepped on each scanline by the differ-
ence between the real edge and xint. If we
do this correctly, our texture mapper will
never read outside the texture (assuming
the texture coordinates are valid in the
first place, of course), and our textures
will not swim as our polygon moves
around the screen. Also, we won’t get the
“hairy texture” artifacts you see in a ras-

terizer that doesn’t step on pixel centers,
where lines in the texture that should be
straight come out with little notches and
pimples.

Figure 6 shows a close-up of a
group of pixels. To start rasterizing, we
must first step our edge to the point A.
This involves an x and y prestep for our
interpolants, marked with dotted lines.
Now, we can precalculate each parame-
ter’s step in y and in x for a single scan-
line step in the screen using the gradients
we calculated beforehand, so each time
we move from one scan to the next, we
just add each step to its interpolant to
find the new value. When it’s time to
draw a scanline, we must step to the first
pixel center. Figure 6 shows this step as a
dotted line at each scanline.

y y0 0int' '= [ ]

x
x x
y y y y xint

' '
' ' ' '= -
-

Ê
Ë

ˆ
¯ -( ) +È

ÎÍ
˘
˚̇

2 0

2 0
0 0

x
x x
y y y y x= -

-
Ê
Ë

ˆ
¯ -( ) +2 0

2 0
0 0

' '
' ' ' '

GAME DEVELOPER • APRIL/MAY 1995  21

Figure 4.  Fill ConventionsGD,9504,Claro4

0

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10

Figure 5.  Equations 6 and 7

dc
dx

c c
x x

c c y y c c y y
x x y y x x y y

' ' '
' '

( ' ' )( ' ' ) ( ' ' )( ' ' )
( ' ' )( ' ' ) ( ' ' )( ' ' ) ( )= -

- = - - - - -
- - - - -

4 0

4 0

1 2 0 2 0 2 1 2

1 2 0 2 0 2 1 2
6

dc
dy

c c
y y

c c x x c c x x
x x y y x x y y

' ' '
' '

( ' ' )( ' ' ) ( ' ' )( ' ' )
( ' ' )( ' ' ) ( ' ' )( ' ' ) ( )= -

- = - - - - -
- - - - -

3 0

3 0

1 2 0 2 0 2 1 2

0 2 1 2 1 2 0 2
7



All this prestepping probably sounds
expensive, but there is a way to do it that
requires no extra multiplies per scanline.
We’ll discuss this in more detail next
month.

Summary and
Random Notes
This article is too long already, but
there’s still plenty we haven’t discussed.

First, we didn’t talk about all the
special cases where linearly interpolating
the texture coordinates actually is correct,
like walls and floors. A close examination
of the math above will show you why this
is true (hint: look at the gradients for the
1/z term). Games like Doom use this to
speed up their texture mappers at the
expense of not allowing arbitrarily orient-
ed polygons. There’s lots of information
covering these techniques on the Internet.

We also didn’t discuss antialiasing
or homogeneous coordinate systems.
Digital Image Warping is a great resource
for antialiasing and image resampling,
while Foley and van Dam cover homoge-
neous coordinates.

Even considering what we missed,
we certainly covered a lot of material in a
small space, and I encourage you to
reread this article with a piece of paper in
hand and try to prove the various results
for yourself. 

The sample code included with this
article implements the perspective texture
mapping algorithm. It is a high quality
implementation with one small problem:
it’s a bit slow, doing a divide and two mul-
tiplies per pixel. In the next column I’ll
show how to optimize this code, which
will give you a production quality perspec-
tive texture mapper you can just plop right
in your game engine.   ■

Chris Hecker wishes he had a Ph.D. in
mathematics so he didn’t have to struggle
with the derivation of the equation for the
area of a triangle whenever he wanted to use
it. In the meantime, he can be reached at
checker@bix.com or through Game Devel-
oper magazine.

U N D E R  T H E  H O O D

22 GAME DEVELOPER • APRIL/MAY 1995

#include<windows.h>
#include<math.h>

struct POINT3D {
float X, Y, Z;
float U, V;

};

void TextureMapTriangle( BITMAPINFO const *pDestInfo,
BYTE *pDestBits, POINT3D const *pVertices,
BITMAPINFO const *pTextureInfo,
BYTE *pTextureBits );

/******** structures, inlines, and function declarations **********/

struct gradients {
gradients( POINT3D const *pVertices );
float aOneOverZ[3]; // 1/z for each vertex
float aUOverZ[3]; // u/z for each vertex
float aVOverZ[3]; // v/z for each vertex
float dOneOverZdX, dOneOverZdY; // d(1/z)/dX, d(1/z)/dY
float dUOverZdX, dUOverZdY; // d(u/z)/dX, d(u/z)/dY
float dVOverZdX, dVOverZdY; // d(v/z)/dX, d(v/z)/dY

};

struct edge {
edge(gradients const &Gradients,

POINT3D const *pVertices,
int Top, int Bottom );

inline int Step( void );

float X, XStep; // fractional x and dX/dY
int Y, Height; // current y and vert count
float OneOverZ, OneOverZStep; // 1/z and step
float UOverZ, UOverZStep; // u/z and step
float VOverZ, VOverZStep; // v/z and step

};

inline int edge::Step( void ) {
X += XStep; Y++; Height—;
UOverZ += UOverZStep; VOverZ += VOverZStep;

Listing 1.  Perspective Texture Mapper

Figure 6.  Pixel Centers
0 1

A

B

C

1

2

0

2

Please use checker@d6.com.



GAME DEVELOPER • APRIL/MAY 1995  23

pLeft,pRight,pTextureInfo,pTextureBits);
TopToMiddle.Step(); TopToBottom.Step();

}

Height = MiddleToBottom.Height;

if(MiddleIsLeft) {
pLeft = &MiddleToBottom; pRight = &TopToBottom;

} else {
pLeft = &TopToBottom; pRight = &MiddleToBottom;

}

while(Height—) {
DrawScanLine(pDestInfo,pDestBits,Gradients,

pLeft,pRight,pTextureInfo,pTextureBits);
MiddleToBottom.Step(); TopToBottom.Step();

}
}

/********** gradients constructor **********/

gradients::gradients( POINT3D const *pVertices )
{

int Counter;

float OneOverdX = 1 /(((pVertices[1].X - pVertices[2].X) *
(pVertices[0].Y - pVertices[2].Y)) -
((pVertices[0].X - pVertices[2].X) *
(pVertices[1].Y - pVertices[2].Y)));

float OneOverdY = -OneOverdX;

for(Counter = 0;Counter < 3;Counter++) {
float const OneOverZ = 1/pVertices[Counter].Z;
aOneOverZ[Counter] = OneOverZ;
aUOverZ[Counter] = pVertices[Counter].U * OneOverZ;
aVOverZ[Counter] = pVertices[Counter].V * OneOverZ;

}

dOneOverZdX = OneOverdX * (((aOneOverZ[1] - aOneOverZ[2]) *
(pVertices[0].Y - pVertices[2].Y)) -
((aOneOverZ[0] - aOneOverZ[2]) *
(pVertices[1].Y - pVertices[2].Y)));

dOneOverZdY = OneOverdY * (((aOneOverZ[1] - aOneOverZ[2]) *
(pVertices[0].X - pVertices[2].X)) -
((aOneOverZ[0] - aOneOverZ[2]) *
(pVertices[1].X - pVertices[2].X)));

dUOverZdX = OneOverdX * (((aUOverZ[1] - aUOverZ[2]) *
(pVertices[0].Y - pVertices[2].Y)) -
((aUOverZ[0] - aUOverZ[2]) *
(pVertices[1].Y - pVertices[2].Y)));

dUOverZdY = OneOverdY * (((aUOverZ[1] - aUOverZ[2]) *
(pVertices[0].X - pVertices[2].X)) -
((aUOverZ[0] - aUOverZ[2]) *
(pVertices[1].X - pVertices[2].X)));

dVOverZdX = OneOverdX * (((aVOverZ[1] - aVOverZ[2]) *
(pVertices[0].Y - pVertices[2].Y)) -
((aVOverZ[0] - aVOverZ[2]) *
(pVertices[1].Y - pVertices[2].Y)));

dVOverZdY = OneOverdY * (((aVOverZ[1] - aVOverZ[2]) *
(pVertices[0].X - pVertices[2].X)) -
((aVOverZ[0] - aVOverZ[2]) *
(pVertices[1].X - pVertices[2].X)));

}

/********** edge constructor ***********/

edge::edge( gradients const &Gradients,
POINT3D const *pVertices, int Top, int Bottom )

{
Y = ceil(pVertices[Top].Y);
int YEnd = ceil(pVertices[Bottom].Y);

Listing 1.  Perspective Texture Mapper (Continued on p. 25)

OneOverZ += OneOverZStep;
return Height;

}

void DrawScanLine( BITMAPINFO const *pDestInfo,
BYTE *pDestBits, gradients const &Gradients,
edge *pLeft, edge *pRight,
BITMAPINFO const *pTextureInfo, BYTE *pTextureBits );

/******** TextureMapTriangle **********/

void TextureMapTriangle( BITMAPINFO const *pDestInfo,
BYTE *pDestBits, POINT3D const *pVertices,
BITMAPINFO const *pTextureInfo,
BYTE *pTextureBits )

{
int Top, Middle, Bottom;
int MiddleCompare, BottomCompare;
float Y0 = pVertices[0].Y;
float Y1 = pVertices[1].Y;
float Y2 = pVertices[2].Y;

// sort vertices in y
if(Y0 < Y1) {

if(Y2 < Y0) {
Top = 2; Middle = 0; Bottom = 1;
MiddleCompare = 0; BottomCompare = 1;

} else {
Top = 0;
if(Y1 < Y2) {

Middle = 1; Bottom = 2;
MiddleCompare = 1; BottomCompare = 2;

} else {
Middle = 2; Bottom = 1;
MiddleCompare = 2; BottomCompare = 1;

}
}

} else {
if(Y2 < Y1) {

Top = 2; Middle = 1; Bottom = 0;
MiddleCompare = 1; BottomCompare = 0;

} else {
Top = 1;
if(Y0 < Y2) {

Middle = 0; Bottom = 2;
MiddleCompare = 3; BottomCompare = 2;

} else {
Middle = 2; Bottom = 0;
MiddleCompare = 2; BottomCompare = 3;

}
}

}

gradients Gradients(pVertices);
edge TopToBottom(Gradients,pVertices,Top,Bottom);
edge TopToMiddle(Gradients,pVertices,Top,Middle);
edge MiddleToBottom(Gradients,pVertices,Middle,Bottom);
edge *pLeft, *pRight;
int MiddleIsLeft;

// the triangle is clockwise, so
// if bottom > middle then middle is right
if(BottomCompare > MiddleCompare) {

MiddleIsLeft = 0;
pLeft = &TopToBottom; pRight = &TopToMiddle;

} else {
MiddleIsLeft = 1;
pLeft = &TopToMiddle; pRight = &TopToBottom;

}

int Height = TopToMiddle.Height;

while(Height—) {
DrawScanLine(pDestInfo,pDestBits,Gradients,



U N D E R  T H E  H O O D

GAME DEVELOPER • APRIL/MAY 1995  25

Height = YEnd - Y;

float YPrestep = Y - pVertices[Top].Y;

float RealHeight = pVertices[Bottom].Y - pVertices[Top].Y;
float RealWidth = pVertices[Bottom].X - pVertices[Top].X;

X = ((RealWidth * YPrestep)/RealHeight) + pVertices[Top].X;
XStep = RealWidth/RealHeight;
float XPrestep = X - pVertices[Top].X;

OneOverZ = Gradients.aOneOverZ[Top] +
YPrestep * Gradients.dOneOverZdY +
XPrestep * Gradients.dOneOverZdX;

OneOverZStep = XStep *
Gradients.dOneOverZdX + Gradients.dOneOverZdY;

UOverZ = Gradients.aUOverZ[Top] +
YPrestep * Gradients.dUOverZdY +
XPrestep * Gradients.dUOverZdX;

UOverZStep = XStep *
Gradients.dUOverZdX + Gradients.dUOverZdY;

VOverZ = Gradients.aVOverZ[Top] +
YPrestep * Gradients.dVOverZdY +
XPrestep * Gradients.dVOverZdX;

VOverZStep = XStep *
Gradients.dVOverZdX + Gradients.dVOverZdY;

}

/********** DrawScanLine ************/

void DrawScanLine( BITMAPINFO const *pDestInfo,
BYTE *pDestBits, gradients const &Gradients,
edge *pLeft, edge *pRight,
BITMAPINFO const *pTextureInfo,
BYTE *pTextureBits )

{
// we assume dest and texture are top-down

int DestWidthBytes =
(pDestInfo->bmiHeader.biWidth + 3) & ~3;

int TextureWidthBytes =
(pTextureInfo->bmiHeader.biWidth + 3) & ~3;

int XStart = ceil(pLeft->X);
float XPrestep = XStart - pLeft->X;

pDestBits += pLeft->Y * DestWidthBytes + XStart;

int Width = ceil(pRight->X) - XStart;

float OneOverZ = pLeft->OneOverZ +
XPrestep * Gradients.dOneOverZdX;

float UOverZ = pLeft->UOverZ +
XPrestep * Gradients.dUOverZdX;

float VOverZ = pLeft->VOverZ +
XPrestep * Gradients.dVOverZdX;

if(Width > 0) {
while(Width—) {

float Z = 1/OneOverZ;
int U = UOverZ * Z;
int V = VOverZ * Z;

*(pDestBits++) = *(pTextureBits + U +
(V * TextureWidthBytes));

OneOverZ += Gradients.dOneOverZdX;
UOverZ += Gradients.dUOverZdX;
VOverZ += Gradients.dVOverZdX;

}
}

}

Listing 1.   Continued from p. 22


